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1. Introduction

This constitutes the final report on the research being performed
by the School of Aeronautics and Astronautics, Purdue University, for
the NASA Langley Research Center under grant number NAG-1-305. The
area of research is multi-input/multi-output control synthesis techni-
ques motivated by applications such as forward-swept-wing aircraft,

which exhibit significant rigid-body/aeroelastic modal coupling.

2. Comnent on Personnel

A major portion of this research was performed by a doctoral
graduate student (Mr. Mike Gilbert), while the student was in resi-
dence at tne Langley Research Center. This was an important element
of this program, providing the opportunity for this work to actually
proceed "in situ” with the graduate researcher interacting daily with
NASA's international experts on control of aeroelastic phenomena.

In addition to the research reported herein, the graduate student
actively participated in experimental evaluations of several candidate
control laws for stabilizing a dynamically scaled, statically unstable
wind tunnel model of a forward-swept-wing aircraft tested in

Langley's transonic dynamics test facility (TDT).

3. Summary

In the early phase of this research, the potential of cooperative
game theory for multi-variable control synthesis was briefly explored,
and a summary of key concepts are attached as Appendix A to this report.

The key conclusion of this survey was that if a multivariable (multi-

input/multi-output) control law is to be synthesized to be cooperative,




this corresponds to a Pareto-optimal rather than a Nash solution to the
mathematical game, and the Pareto solution may be found via Linear
Quadratic Regulator control theory. On the other hand, if, for example,
more than one interacting controller is not being synthesized by the
same "designer," the optimal solution is the Nash equilibrium.

A second method of modern control law design was proposed that
addresses the problems of selecting the cost functional which the
control law is to optimize, and the lack of other useful design infor-
mation. The approach recognizes that in any optimal control problem,
there are many more design parameters to be selected than the gains of
the optimal control law. These additonal design parameters may be part
of the system dynamics or they may be part of the optimal control
problem formulation. Either way, by calculating the sensitivity of
the dynamical system time and frequency domain performance to these
parameters, systematic ways of altering these parameters to improve
the performance of the control law can be developed. For example, if
the parameters are selected as the nominal values of the poles of a
compensator, the compensator design can be adjusted to provide better
performance. Similarly, if the parameters are entries of the optimal
control problem cost functional, then the control problem itself can
be altered to meet time domain design specifications. This technique
titled the "Optimum Parameter Sensitivity" approach is presented in

Appendix B of this report.
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Aspects of Non-Zero Sum Differential
Game Theory with Application to Multivariable Control Synthesis

M.G. Gilbert
April 11, 1983

Introduction:

Modern, optimal control theory and differential game theory (1-4)

were developed concurrently but independently during the early 1960's.

Both are concerned with obtaining optimal control strategies (open or
closed loop) for nulti-input systems describable by a set of differential
equations. Optimal control protlems are characterized by a single controller
using a control law picked to minimize a single scaler objective function.
Non-zero sum differential games on the other hand involve several players
(controllers) each attempting to control the system to minimize it's own
cost function in the presence of the control actions of the other players.
Thus differential games are characterized by multiple controllers minimizing
multiple cost functions, leading to a vector minimization problem in

order to obtain optimal control strategies.

Modern optimal control theory has been studied extensively and has
found application in developing control laws for state regulation, terminal
guidance, and process control. Much less is known about differential
games, whose primary applications have included pursuit-evasion studies
and economics problems. It is generally recognized that optimal control
can be viewed as a subset of differential game theory, as will be apparent

in the linear, time invariant, game to be discussed in the next section.



Some Aspects of Differential Game Theory:

Generally, the average control law designer is much more familiar
with optimal control theory than differential game theory; for that reason
this section will highlight some important features of differential game
theory. The discussion which follows pertains particularly to linear,
time invariant, non-zero sum differential games which can be modeled

mathematically as

X = Ax+ ] B.u 1)
i=1
It is assumed that each player or controller picks his control uy to

minimize a quadratic cost function of the form

- J (xT0,x + jg] us"R, jughdt 2)

)
Note that the ith player may be penalized for the jth player's use of
control energy.

.n general, it cannot be expected that a control strategy set U 2
{u], cees um} can be found which will absolutely minimize every player’'s
cost function in the presence of the other player's control actions. If
such a control set exists, it could be found by solving m uncoupled
optimel control problems with each player independently controlling the
system. Because such a control set cannot usually be found, definitions
of the sense in which a control set U* is optimal with regard to another
control set U are needéd. There are three widely accepted definitions

of when a particuler control law solution set U* is optimal in differential



game theory. These are the Nash Equilibrium solution, the min max solution,
and the Pareto-optimal or non-inferior solution.

0f the three solutions, the Nash Equilibrium and Pareto-optimal are
the most useful for the development of control laws satisfying the game.
This is because the min max solution assumes irrational behavior of the
other m-1 players when solving for the ith p]ayer§ control law. Specifi-
cally, the solution assumes the m-1 other players are ignoring their own
costs and using their control to maximize the ith players cost. The game
then becomes zero sum (the ith player minimizing his cost and the m-}
players combined maximizing it). The solution is overly pessimistic
and may fail to be finite for the ith player even in well posed games.

Alternatively, the Nash Equitibrium solution assumes rational beha-
vior of the players. The i th player's Nash Equilibrium control minimizes
his cost function when the other m-1 players play their own Nash. controls.

Mathematically, this is stated as

* * * * *
1 ]
Ji(u 3 e ui—], ui, U_H_], .e um) ?_Ui(ul 3 oo u ) ))

* *
where Ji is given by 2, Uy s -o- U, are the comporents of the Nash control

* * *
set 6 (u] > - U ), and uy is any control strategy other than the Nash
control for the ith player. The Nash solution is a stable equilibrium

solution, since a player cannot deviate from his Nash control without
incurring increased cost if all the other players use their own Nash controls.
Necessary conditions for the Nash Equilibrium solution for the game

given by equations 1yand 2) are

1T
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where Si are solutions of the m coupled Ricatti like equations

& - . oaTe L _r o= 1 T
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5)
-SiBjRJ.J.']BJ.TSJ. - sJ.BJ.RjJ.“BJ.Tsi] , Sy(te) = 0
Unfortunately, these equations are difficult to solve and only a few
sufficient conditions for the existence of solutions to the equations are
known (Ref. 5). In the single player case (m=1), the equations 5) reduce
to the single Ricatti equation of optimal control theory.

The Nash solution, stated mathematically by 3), is an uncooperative
solution since each player is only concerned with minimizing his own cost,
and cares nothing about the other player's costs. The question then
becomes whether or not other solutions exist which simultaneously reduce
the costs of the players from their Nash costs. Pareto-optimal or non-
inferior solutions to the differential game may be solutions with that

property. In fact, Pareto-optimal solutions have the property that
- ") % o= A
Ji(u], sy U ) = J.(u] s oeees U - 1, ... m 6A)

or there is at least one i=1, ... m such that

* *

Ji(u], vees um) > Ji(”] 2 eees U ) 6B)
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* *
where Uy s oees U are the components of the Pareto-optimal control set

w*(u]*, vy um*), and Ups wees Uy are contro1§ other than the Pareto-
optimal controls. There are many solutions satisfying 6A), 6B), some
of which may have costs for each player lower than their corresponding
Nash costs. Selection of a particular non-inferior solution in all cases
involves trading off the costs of one player over another, thus the
players are faced with a negotiation in order to obtain a solution, or
else some level of cooperation among players must be enforced.

It has been shown (6, 7) that some* of the non-inferior solutions
to the vector optimization problem can be obtained by solving an m-1
parameter family of optimal control problems, if the cost functions
satisfy certain convexity requirements. Mathematically, this is stated
as follows. The control set w*(u]*, cees um*) is Pareto-optimal (non-

inferior) if

IJv*) < Iv) oy #v* 7A)
L m
where 3(v) = § o9 (y) » ey 2 O ¥i=1, ..., m, oand ] o= )
i=1 i=1
or
Jy*) < Jw) v # e 78)
L ’ m
where J(y) = ¥ “idi(w) » a; >0 ¥i=1,...,m, and ) a; = 1.
i=1 i=]

*For the linear, quadratic cost game, it is believed all could be found,
however unrealistic it may be to do so.
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By 7A, the sets y* which give the unique minimum of any individual Ji

is Pareto-optimal. Note that selection of a set of s thereby defining
a particular so1utidn, is equivalent to so]ving the negotiating problem
referred to previously.

For the linear, quadratic cost games of equations 1) and 2) (the

Ji of 2) satisfy the necessary convexity requirements, see Reference 8),

the Pareto-optimal solutions are

* m -1 T
Uy (a) = - JZ] ujRj_i B'i S{a)x 8)
where S(a) is given by
. T m m r -1 T
= -SA - - Q. + R, .R.. .S
S A .S iZ]cx]Q] S iZ] i jZ]aJR“ B1 S 9)
S(tf,u) =0

with the oy satisfying the conditions of 7A), i.e. a; > 0.

There is a geometrical interpretation, first given by (3), which
is useful in understanding the Nash and Pareto-optimal solutions. Con-
sider a two player game, with contours of constant cost plotted in the

Uys Uy control space, as shown in Figure 1.

The short-dash lines are the minimizing control for one player
when the other plays every other control in his admissable control range.
The intersection of the two dash lines is the Nash Equilibrium solution,
which occurs at the intersection of two cost contours. The cross hatched

area represents admissable controls Uy and Uss which if played would
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Figure 1

result in reduced cost (from the Nash cost) for both players. The Tong-
dash line, which follows the tangent points of the cost contours, are the
Pareto-optimal solutions. These are the minimal cost solutions for each
player. They require cooperation, since both players must trust the
other not to p]ay.a minimizing control in response to the first's use

of control in the shaded area, and therefore these solutions are vulner-
able to cheéting. For example, say player two uses a control on the
tangency line in the cross-hatch region in anticipation of player one
using his control to arrive at solution A, but player one cheats, playing

his minimizing control resulting in solution B. This is the so called



"prisoners dilemma"” (1), which most differential games, particularly
Tinear games with quadratic costs, have. Note too what would happen if
the Nash solution were aiso non-inferior; the non-inierior solution
would be stable and invulnerabie to cheating. This desirable situation

does not occur in general.

Application to Control Law Development:

The last section discussed the types of solutions whis occur in
differential games in general, and-linear, time invariant, quadratic
cost games in particular. There are many more important properties of
these solutions which were not discussed. Rather than devote much more
time to these important properties, the potential of differential game
theory to improve control Taw development for multi-input linear systems
will be discussed.

Optimal control- law synthesis for multi-input systems has in the
past been primarily performed using modern optimal control theory, that
is by minimizing a single scaler-valued quadratic cost function. This is
because modern control theory takes advantage of powerful matrix wethods
for algaebraic manipulation, because most control system designs have
in mind a single overall objective, and because of the difficulty of
obtaining solutions to vector-valued optimization problems. For example,
primary aircraft flight control systems have as their main objective
improvement of the aircraft handling qualities. In those cases where
several systems were desired, say an automatic fliglht control system

and an active structural control system, the nature of the system plant
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(aircraft) was such that the systems might be designed separately. These
are cases where a control set uniquely minimized both cost functions.

With the fucreasing complexity of aircraft design has come instances
where several control systems could not be designed separately, the
Grumman forward-swept-wing (FSW) demonstrator being an example. Because
of the coupled rigid-body and structural dynamics of the FSW configur-
ation, the separate flight and structural control systems of that
aircraft have interacted unfavorably with each other. This is a case
where an integrated approach, satisfying two different, broad, overall
objectives and making use of differential game theory solutions might
lead to better control laws for both systems.

0f course the question remains as to what is meant by better? Al
differential game theory has promised is that the individual cost
functions, which may or may not have physical significance, will be
minimized taking into account the control action of the other. The
important physical properties of these solutions, like closed-loop
eigenvalue locations, robustness properties, freguency response, etc.,

remain unknown. On the plus side h.wever, there are now more solutions

(control laws) to evaluate which at least have known properties among
several scaler parameters than there are with an optimal control solution.
There exists at least one example where a Nash equilibrium solution
(while not explicitly labeled as such) was proposed for control system
development (9). The methodology attempted to account for the control

action of the aircraft pilot in the design of an aircraft longitudinal
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stability augmentation system, The pilot was assumed to be an optimal
requiator, leading to a two player, linear, quadratic cost differential

game. Properties of the solution like eigenvalue lccation were not

wprom gy D
P RS s YA AR W Ry

investigated as the scaler cost of the pilot was directly related to

e

the Cooper-Harper handling qualities rating scale, the primary objec-

i A g

tive of the methodology being the best (lowest) Cooper-Harper rating

” ey
et e ke, A

possible. This example does serve however as an incentive to investi-

PR N

gate the potential of differential game theory for control law design,

b
G~y

since it was advantageous to use the theory in this case.

Questions:
The previous section has vaguely called for an "investigation" of

differential game theory in the context of multi-input control system

f development. Some work is known to have been done in this area (10).
The author is puzzled though that apparently a lot more has not been
done. Either there exists unknown work which dispels any advantage of
game theory in these situations, or else thgy have never been considered

due to their complexity, the lack of a need to integrate several systems,

T P R T Y T o

or whatever. If the latter is the case, then enough guestions arise

about the differential games solutions and their applications to advise

many investigations. Some questions are listed here.

1) Only 2 few sufficiency conditions for the existence of Nash
solutions are known, given in terms of the norms of defined
matrices when either a) the system A matrix has a prescribed

degree of stability, or b) the solution to certain auxillary




2)

3)

4)

TR
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control problems exist (5). Are there conditions on the
wéighting matrices of the cost functions (1ike observability
and controllability concepts from optimal control) which
determine directly if a Nash solution exists, rather than
through the solution of an auxillary problem?

Are there weighting matrices in the cost functions such that
the Nash solution is also non-inferior? Such a solution would
have many desirable properties. In addition, the mathematical
question of when a set of coupled Ricatti like equations could
be solved by a single Ricatti equation would be answered.

Are there enough relationships between the individual cost
functions and the physical properties of the closed-loop system,
i.e. eigenvalue locations, freguency response, etc., to justify
considering Pareto-optimal solutions over the Nash solutions?
1f so, can the problem be further reduced to a simple modern
control problem with pre-defined structure? Or is the Pareto-
optimal solution just another way of picking weighting matrices
in modern control problem cost functions, similiar to methods
used in Bryson and Ho and Kwakernaak and Sivan?

What kind of solution is a linear, quadratic cost, multi-input
modern control problem in the context of differcntial games?
Are the individual controls in the problem in a Nash Equilibrium,
are they cooperating in a Pareto-optimal sense, or are they

in a "prisoners dilemma" situation?
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OFTIMAL LINEAK CONTROL LAW DESIGN USING OFTIMUM

PARAMETER SENSITIVITY ANALYSIS

by

Michael G. Gilbert

A Fropousal for Doctoral Dissertation Research



I - (HNTROLUCYTON

The use af feedback is a well known and effective means
of altering the dynamics of a system in order to improve
stabili1ty, reduce sensitivity to model errors, and meet
performance owpecifications. The design methonds used to
develop these closed-loop contral laws can be broadly
classified into two categories, classical and modern.
Classical methods provide systematic design informoation that
is uwwed by the designer Lo develop single loop countrollers,
possibly with their own dynamics, to meet performance
specifications. They are less than easy to use 1f the
system 13 multi-input/multi-output in nature. Modern
methods, on the other hand, determine high order control
laws easily, and they optimize a auadratic functional of the
system states. The disadvantage of modern methods is the
difficulty of writing the cost Ffunctional to reflect the
performance specifications of the system, and the lack of
systematic redesign information if the original design is

unsaltisfactory.

A method of modern control law design has been
developed which addregses the problems of writing the cost

functional which the control law is to optimize, and the
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lLack of useful  dewign information. The method recognices
that in any uptimal control problem, there are many more
design parameters to be selected than the gains of the
optimal control law. These additional design parameters may
be part of the system dynamics or they may be part of the
optimal control problem formulation. Either way, by
ctalculating the sensitivity of the dynamical system time
domain performance to these parameters, systematic weys of
altering these parameters to improve the performance of the
control law can be developed. For example, it the
parametor's are selected as the nominal values of the poles
of a compensator, the compensator design can be adjusted to
provide bhetter performance,. Similarly, if the parameters
are entries of the optimal control problem coast functional,
then the control problem itself can be altered to meet time

domain design specifications.
I.a - Bachkground

The concept of sensitivity of optimum solutions to
problem parameters has recently been developed by CSaobieski,
RBarthelemy, and Riley [1], and Rarthelemy and Sobieski [2,7
in the field of paramester optimization theory. This concept
differs from the traditionsl idea of sensitivity analyses in

that the results are used in the design process rather than

the performance assessmnent stage, What this means is that
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the sensitivity data is uwsed to redefine the original
uptimization problem so as to improve performance by
altering presclected parameters of the problem (parameters
not selected by the optimization{. Frior to this
developmont, sensitivity analyses were used to determine
rer faormance changes to arbitrary, uncontrollable
perturbations in system parameters. The optimal sensitivity
derivatives calculated by Sobieski, Barthelemy, and Riley
were oblained by differentiating the necessary conditions of
aptimality for non-linear programming problems with
inequality constraints. One of the most interesting
applications of the optimal sensitivity results has been 1in
the development of multi-level optimization schemes for
large structure parameter optimication problems (Sobieski,

James, and Davi [417.

Sensitivity analyses are commonly used in both
classical  and madern control theories to assess the effects
uncontroled variations in the system parameters will have on
system performance, primarily in stability margins. Methods
have bheen developed by various researchers (e,q. Yedavalli
and  Skelton ([91) for designing control systems which are
insensitive to parameter variations. Only recently, time

FeSOONSe senuitivitly was introduced as a means of assessing
v

h

system performance changes to  parameter variations by

Gohanchteor (4l Neither of these applications of



ORIGINAL PAGE 12
OF POOR QUALITY

sensi1tivaity wies the nformeotion as  part of the design
prucess however. There also enist several methods for
defining the modern contraol theory problem <0 as to meet
certain system objectives, besides the commonly used
intuition of the designer. These include selecting
weighting matrices on the basis of asymptotic properties of

linear regulators (Harvey and Stein (7] and Stein [(81).

Other arees of control system design worth mentioning
are output feedback theory, reduced order compensator
design, and frequency chaped linear regulator design.
OQutput feedback theory was developed by Levine and Athans
L?] a2nd solves the problem of feeding back fewer outputs of
the cystem than there are states. Reduced order compensatar
design is receiving attention because it recognizes the
actual control law structure that is uswally implenented on
working hardware. One method of designing reduced order
compensators has been parameter optimization methods
(Mukhopadhyay, Newsom, and Abel (101), Frequency shaping
techniques of linear regu!ator design were developed by
Gupta (111, by making the weighting matrices of the optimal
control problem functions of freduency. These areas of
control theory are noted because they have the potential to
mat.e use of optimal sensitivity analyses as will be

]

provented in this paper.
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L.t - Froposed Methodol ogy

The proposed method of contral la@ design makes use of
the i1dea ot optimal sensitivity to problem parameﬁers to
develop and use sysiematic design data to further i mprove
controlled system time domain performance. This is to be
done by computing the sensitivity or derivative of the time
dennain COSUN S, 21 ther absaolute or mean squa3ra,to
paramcters of the problem not selected az part of the
optimization procres. Theve sensitivities are then to be
used to rude{ine. the parameters so the problem can be
resolved,  with an espected improvemoent in per formance. The
sensitivities are computed 1n a two ctep process. First,
the sensitivity of the necessary condition for the control
to be optimal is obtained, and then the sencitivity of the
Lime responze is computed as a funclion of the sensitivity
of the necesszary condition. The result 1s a connection
between Lhe time response aof the system and the paraemelLers
which specify the optimal control praoblem being <colved.
With this connection, it is possible to specify changes in
the designer selected parameters using a first order Taylor
series, and. the uptimal control problem resolved, leading to

a two stage optimal cantrol design process.
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This section prewents a discussion of the use of

parameter gsensitivity analysis in the development of linecar
regul ator control lawsz. In this section, the time domeain
aslate, output, and control responses, both absolute and RMS,
are of interewsi. The derivation of the sensitivily of these
time responses to arbitrary parameters of the dynamical
system or Lo parameters of the control law formualation will
Jdaovaeloped in the first subsection, followed by a review of
linear regulator theory. The following subszection will then

combine the parameter sensitivity r¢esults and  lineoar

raegul ator theory to give a systematic aethod for erther
Jefining the linear regular problem or altering the cystem
dynamics to achieve desired time daomain responses. This
section will then be concluded by a discussion of practical
aspects of thia methodology, as it applies in  the case of

time domain design criteria.

IT.a - Farameter Eensitivity of Time Domain Responses

The saensitivity of time daoamain state, aoutput, and
cantirol responsas tou arbitrary parameters that appear 10 the

madeel  or conbrol law formulation, forr a2 linear, btime
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invariant dynmamical system is derived in this aubsoestion.
The derivation beging by considering the state space model

of the system in the form

w = Ax + Bu + Dv

(11.1)
y = Cx
where % 1is an n-dimensional state vector, u is an

m—-dimensional control vector, y is an l-dimensional output
vector, and v is a k-dimensional disturbance vector which
may be either deterministic or stochastic. The matrices A,
B, ©, and D are constant coefficient matrices of the
appropriate dimensinns. Assuming that a linear, full--state
feadback control law exists and is specified as u = B,

then the closed-loop dynamics of the system are given by

= fi + Dv (11.2)
where A 13 defined as

A=A - BG (11.3)

The closed-loop system given by eqn. (II.2) is A
function of the original model dynamics matrix A, input
matrix B, and the gain matrix B. Each of these matricaes may
themeelves be functions of parameters which may vary due to
4 natural process of the system, may be imprecisely hoown,
ar may he specified by the designer. For eiamnple, the
nntries of the A matriy may be subject to wmodeling O QAr S,

and  the ontrries of the gain matrix G, if they are obtained
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WLl g oplLieal cant el theory, are functions ot dasigner
velected weightings, It is possible to deterane  the
aeffocts these paramchers have ot thé state, oubtput, and
control  response of the closed-loop syetem (171.2) in the

following mannar.

The time responze of the closed-loop system (11.2) due
to Lhe diztiebance v 18 waell known and is given 10 terms of
the otale tranzit:on matrix  and matri superposi tion
1inteqgral (121 as

. :]'
sty = e 418 (oo de (11.4)
X ; J

+
.

. o
whier e «Ef(t«,t\) 15

the state transition matrais  of the
clused-loop dy.amice malrix given in eqn. (I1.73). In order
to calculate the sensitivity of the state to arbifrary
parameterz, it is of course passible to diferentiate eqgh.
(I1.4) with regpect to those parameters, but because the A
matrin of eqn. (II1.%) 1is 1in general not symwmetric, tLhe
diferentiation will prove difficult. The alternative 13 Lo
differentiate eqn. (I1.2) first, and then wrii ke the

superpasition integral for that espression. Froceeding

. —
b ML %

- R L Y A TR o1 I.S

op v 3p

where p 1o the arbitrary parameter, and 1t has been 2a2ssumed
that the disturbance v o and  the way it enters the systom
. .

e ough the maetry ) are  independant of e par smeter,

e brme responaee of cane (I1.9) 15 gimiliar Lo e s oosten
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1t th ot the transition malriye  of (11.% 13
ta that of (11.4), with egn. (11.9) driven by the

slate of thoe Clased-loop systemg
9t ' U 35
=g(t.to)—~-(to) +j§<t,v—-x(‘md‘t (I1.6)
0 Jp N ?p
»
In general, the initial state of the system will also be

independent af the parameter p, so

reduce

The above results give the sensitivity of the state
prohlem parameterss

or controls

to the calculation of the

that eqn. (11.46)  will

inteqgral term only.

to
if the sensitivity of the system outputs

are of

interest, the results of eqn. (I1.4) can

be used to calculate these quantities as well, since both
are linear functions of the state. For the system controls,
the gsensitivity to praoblems parameters is obtained using
u = -G as
dqu ?6 X
Rttt & (I1.7)
Ip dp Ip
and the sensitivity of the system outputs to the paranmcters
is
pYY QC o
-— = -y 4+ C-- (11.8)
dp % I

The sentitivity rvwesults that have thus far been
obtained sre for cases vhere the sensitivity of the abaolute
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Lame v eLponse Us af pnber vl 1t the covariance ot the
system  =tate 1u of antoerect, @ thiterant set of results can
be  abbtooned using  the cloused~loap- sysatan Covarl ance
equations, The covariance responce of Lhe syatea given by
eqn. (I1.2) to the disturbance v in [13)

X = AX 4 XAT+ DVDT;X(Q;O) = X, (I11.9)
vhere X is doefined as the syslem covariance matrii, A is the
clated-loop  dynamics matris, and V is the intensity materi:
Oof v 1t v 19 a sero-inean, Gaussian, white noise, random
vu;tnr, or the square disturbance if v is deterministic (if
v 1s determimistic, then ¥ 1g the square responsa)., The

sens1tivity of thre syctom covarrance to the paramecter p s

Just
]
dx oX ¥ v A QKT
—= = Am= 4 —R 4 emX 4 Xem (I1.10)
op 9 Ip dp dp

where it has again been dssumed that the disturbance and the
way 1t enters the system are independent of the parametersg,
Notice that eqn. (I1.10) has the same form as eqn. (I11.9),
and contains the system covariance euplicitly.

I1f the closed-loop control 1aw vields an asymptotically
stable system (all the ergenvaluws of (I1.79) strictly in the
1v(t~h31f—plane), then the covariance equation (11.9), for
the case of a stationary random input vy Will achieve a

A\

sleady-state solution [131 given by

G el b ;\KT« DVDT (1i.11

ke HALASI S Ly P PR
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ad the uwenzativaty equation (I1.10) will also  have a

clteady-state solution (4] given by

; o =T
_eX M .y 2R N
QO = nrm + - 4 e 4 K- (11.12
p 3p ap P

The sensitivity of the control and output covariances
arz obtained froum the state covariance sensitivity 1n the
followuing manner, The contraol covariance is, 1in terms of
the state covariance, (13]

U = GXGT

(I11.1° 9
Differentiating egqn. (I11.13) with respect to the parameter p
gives

W3 ¢ L 8

- = ---XG + G-~G 4 GX-— (11.14)
p  dp Ip 3Ip

The csencsitivity of the output covariance [12] 19 obtained

similarly as

v = cxc’ (I1.1%)
and
W I ¢ I s¢T
—- = ==XC 4+ C--C'+ CX-- (11.16)
P 9p Ip Ap :
II.b - Optimal Lincar Regulator Theory
. 1

T this suboection, a brief review of lineasr rvogulator

thoory 1 e precented four the infinite time, cunstent

e waw e A wen e - o
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cowfficiaont tull st ave taosadbackh case. This matoerial will
Le used 1 the nest subsecction along with sensitivity
results to develop @ methodology of control law design  to

meet time domoin response criteria.

Consider again the open-loop dynamical system given by
eqn. (I1.1). It 15 desired to find a state feedback control
law, that 15, a countrol policy which is a function of the
astates of the <cystem, such that the ustaltes of the syztem
stay close to zeruv 1n the presonce of the disturbance v. In
fact, the objective of the design can be generaliced to
achieve dausired output performonce 1n the presence of  the
disturbance, by uwsing the output equation in (II.1). The
uptimal solution for this provlem, when the obiective 14
stated as a quadratic function of the state< and controls,
is the standard linear, quadratic regulator, The Lo

reqgqul ator problem is formulated as follaws.

A scaler cost  functional of the outputs and the
controls is formed as
<
g = j (v o'y + u Ru)dt (11.17)
>
vwhern Q7 and R are designer selected weighting matrices
which reflect the importance of the responses to the
dosigner, The 0 matrix must be posttve semidoefinits, and

the R matrii must  be positive detinite L[141. Tho> cost

funcitional J  given by (I1,17) can ba roewritton an teras of
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il wyslom shates by defining 0 = C Q'C,
;@

doe )T e e wru)de (11,18}
‘e, .
2 necessary canditions for the control u to mimimize the

wuut functional of eqn. (11.18) yield the equations [14]

=T
o cRTB P (R)i(t) (I1.193)

[ ] -
P = -FA - AF + FER B F - O

-

P(to) = 0 (I1.19b)
Py . :

Tf the matrin pair (AL is completely observable (1513,

then the matri differential Riccati equation given by

(II.19b7 will have a steady-state solution for F which 13

Jiven by

R Oy Al

P FOREF - 0 (I1.2G}
In the steady-state case, the optimal control policy becomes
time dnvariant, the gain matri defined as G = B BB ic

conztant, ond the closed-loop system dynamics is given bv

egqn. (IT.2).
Il.c — Regulator Design Using Farameter Sencitivity

With the rezults of the two previous subsections, E)
methodoalogy ot control  law deuiqn. to méet time domain
respnnse criteria, using an aptimal control law, will now be
presented. Thia method addresses the main drawbaclk of L&
reguelatar theaory, and that is the necd for the L desigrer
to gselect certain design parameter o without the benefit of @

by srcal relationahip betweon  thouse paraocters  and Lha
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actual Lime responses of the system. For eiample, by

selegting elemcnts of the Q@' and R matrices as pareameters,
the paramaetler sengitivity results of subsection Il.a can be
used to define the optimal L@ probleh to meet the time
domain critaor:a. The fact that a physical relati1onship
between the designer selected weights and the time domain
responses  can be established 158 seen by estending the

parameter sensitivity results,

To beqgin, recall that both the absolute time response
sensit,vity, 2qM. (I1.6), and the covariance sensitivity,
eqn. (I1.10), are {functions of the partial derivative of the
closed-laoop dynamics materix A with respect to the parameter
p of interest. Fmr.the case of the optimal LO control law
the partial derivative can be calcﬁlated, using eqn. (I1.23).
Thus
3A  IA IE 36
~— = == = =G - B-- (I1.21)
I 9p Ip ap
Now, the partial derivative of the gain matrin G with

respaect to the paramiter p 13 calculated as

96 SR - _‘QE«T o
-— = ~~—B F + R -- P + R B -~ (I1.22)
I3p Ip ¢p p

An expression for the partial derivative of the steady-state

matri: Riccati equation (egn. 11.20) can be obtained by

adding and subtracting 2FER B P to egn. (IT.20) to get

Qo= 4 - BﬁﬂBTP)TF + B A - UﬁﬂbrP) + 0O Pﬂﬁ‘érP U I S
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Drffaerentiating  eygn. (11.23)  with respect to p, canceling

terms, and replacing RqﬂrP by 6 gives

3. e e 3h

QO = A-—~ + —-=A +{-~ + ——f 4 P

% 9p idp Ip Ip
A . (11.24)
IB | o oK , 98
T -
- F|l--R' B + B~— K + BR —-~ |P
7p ap 3p
With eqn.’'s (I1.21), (I1.22), and (II.24), it is now

possible to rcalculate the sonsitivity of the absolute time
response to parameters of the optimal L8 requlator problem
using  eqn, (I1.6), and the sensitivity of the state
covariance to the parameters using eqn. (I1.10)., Control
and output absolute time response sensitivities are
calculated from eqn.s (I1.7) and (11.8) once the absolute
state <censitivity is obtained. Control and output
covariance sensitivities are aobtained from eqn.s ([1.14) and
(I11.146) once the state covariance s=nsitivity 1s calculated
from eqgn. (Ir.1an ., These sensitivities are the physical
lints between the designer selected parameters of the L0
design problem and the actual time responses of the

closed-laop system.

To illustrate the use of optimal parameter sensitivity
analysis in the design of optimal linear regulators, the
fullowing si1tuation is considered. Assume that a dynamicel

s

system modeled by a linear state space representetion 1s ta

be cuntrolled by feeding back all  the  ayestoem states,
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tncluding states which are used in the model to represcnt
the dynamics of the control actuators, A quadratic cost
function nof the form given by eqn. (I{.lﬂ) is written, which
welights the states and cantrols. The optimal linear
regulator problem is solved (eqn.s 11.19), and the system
state covariance response to a random input calculated from
eqn. I1.11., If the RMS response of one or more of the
states 1e unacceptable to the designer, sensitivity analysis
can be used to change the design, in the following manner.
A set of one or more parameters is selected, say for example
the time constants of the actuators and elements of the
state weighting matrix Q. The sensitivity of the
unacceptable state response to these parameters is
calculated uscing eqn.s (I1.24) and (II.12), and the
unacceptable response expanded in first order Taylor series
about the nominal value of one of the parameters. This
expansion 15 then uvsed to make a change in the naminal value
of the‘parameter such that the state response is improved.
The optimal linear regulator problem is then resolved with
the new value of the parameter. The result is an optimal
control law which more nearly megets the state response

criteria of the designer.
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11.4 = Extensions and Fractical Considerations

In the previous subsections, thé idea of parameter
sensittivity was discussed, LR regulator theory reviewed, and
the means of using parameter sensitivity as a redegsign  tool
in optimal control theory presented. This subsection will
discuss potential extensions of the use of optimal
sensitivity analysis, consider the practical aspects of
computing the sencitivities, and give the reasoning behind
the assumptions and restrictions that were made during the

course of the development.

The use of optimal sensitivity analysis in other kinds
of optimal control design processes ig readily apparant,
particulary in the three areas menticned in subsection T.a.
The first of these was the output feedbacl: problem, where a
number of system outputs, less than the number of states,
are fedback. Optimal sensitivity results can be derived for
this problem, since the necessary conditions for the optimal
solutian are Lknown [2]. Thus optimal sensitivity aﬁalysis
can be used in the same manner for this problem as for the
full gstate feedback problem, Perhaps moare appealing is
usgng the sensitivity results for the output feedback to
design reduced  ordaer control laws. This could be done by
augmanting the sttwm séatu equations with & set of dynemcs

which reprosenta a dynamic compensator. Treating the
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coetticiants of the compensator, which define it's dynamics,
as  parameters, and wusing output feedback theory to find
geins for the states of the compénﬁator, sensitivity
analysis could be uwused to iterate on a solution for the
compensator, Annther possible extension is to the frequency
shaping problem of Gupta (111, where the sensitivity
analysis could perheps be used to define the elements of the

frequency dependant weighting matrices.

As far as  thoe computation of sensitivities is
concerned, it should be apparant that for each differant
scaler parameler o interest, a set of vector/matrix
equations must be colved. At first, this seems like a large
computational burden, since these kinds of equaticns can be
difficult and erpensive to solve. Fortunately however, the
coeff.cients of the time response eguations and their
associated gsensitivity equations are exactly the same, and
further they are independent of the parameters. This means
that ance the coefficient matrices have heen factored to

solve the covariance equation for example, they need not be

factored again., Rather, each new equation can be solved
merely by forward and back substitution of a  new
right-hand-zide. In addition, a method similiar to that

used in 0143 ko calculate gradients of cost functions may be
v

adapted to this analysis technigue, further simplifying the

compuitational  burden. Similarly for the absolute time
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response equations, the state transition matrix needs to be

computed only once for each control law,

Most of the assumptions and restrictions made during
this development are related to solving the LQ regulator
problem. The restrictions that the &° matrix be positive
semi~definite and the R matrix be positive definite insure
thalt a solution eixists that will stabilze the system if it
is inltially unstabhle, if the matrix pair (A,B) 15 at least
stabilizable, and the matrix pair (A,C) is at least
detectihle. The requirement that the pair <a.f5> be
completely abuervable is desirable éo that a steady-state,
symmetric solution to the matrix Riccati equation exists,
In light of the desire for a symmetric solution to the
Riccat: equation, the selection of parameters from the @ and
R matrices should be made in such a way so as to make sure Q

and R are always symmetric matrices.
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In section 11, the idea of sensitivity of optimum
solutions to problem parameters was adapted to optimal
control problems. A deraivation of optimal sensitivity
analysis for these type problems was presented to illustrate
that the methodology could be used to aid the design of
linesr feadback control laws. This section will propose a
systematic invastigation of optimal senstitivity analysis as
design  tool in optimal control design. This investigeation
has as an objective the development of a research progrem

satisfying the requirements of a doctoral dissertation.
11T.a - Fropoced Research frogram

Section 11 presented the initial development of a
desi1gn methodology based on optimal sensitivity analysis.
Clearly this development was incomplete in the sense that
only the infinite time, constant coefficient linear
regulator prablem was addressed. As the first step in  a
logicel development of a methodology, a broader class of
prablems oust be considered. Ta this end, the genoral
mathemat1oal fprmulatimnvof optimal sensitivity analyelrs in

aptimal control thoeory would be sought. This would  include
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entension Lo finste Limne cases, 1ncloding final time state
weightings, and to the time varying ﬁgxem dynamics coases.
Certalnly the method must 5150 be extended to considor cases
vihere the {feedbacl varisbles are contaminated with noise.
Thus the optimal sensitivity of linear-quedratic-Gausszian

(LAG) regulators would be a result of this stady.

Also in section 11, a design methodology, using optimal
sensitivity analycis, was suggested. This method too needs
to be formaliced and ezercised on Appropir ate,
represzntative problems. One suggested problem would
involve tﬁe integrated control of flight dynemics. and
structural dynamics of a highly coupled, flexible aircrafi.
With this evample, it is expected that the method'will prove
advanLagumus. since the designer will be afforded more
information with which to select design parametefa in  an

systematic manner.

i intercsting  odaptetion of optimal sensirtivity
analysis  would be in the ares of reduced-order dynamic
compensatorsﬂ One previous method for solving thewe type
probleaems das baen dircect parameter  optinization s of the
control laws., Optimal sensitivity analysis may be able to
waad  for bhoge binds of designe without resorting to diroect

N M .

optimzat ion., To do this, the sensitivity analysio  wowld

have to boe dovelaopod foar Lhe output feedback probl en. Tho,

e
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by augmenting Lhe cystom dynamics by a canonirnel form of a

(14

compensatar y,  and selecting as the output feedback variableg
the states of the conpoensator, the sensitivity of the system
response to  the elements of the compensator could be

calculated., These sensitivities could then be used to

redefine the compensator.

As a final area of proposed research, the sensitivity
of frequoncy domein reponses to parameters of the optimal
control law formulation should be investigated. Thise study
would help establish a relationship betweon these variable:
and the {requency response af the system, In the course of
this study, 1t may b necessary to consider the frequency

shaping quadratic forms of Gupta (111].
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